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Abstract. This work explores a Deep Neural Network based approach to double 

the frame rate of a video by adding synthetically generated frames between two 

consecutive frames in the original video. The Neural Network is a Generative 

Adversarial Network that consumes two consecutive frames from the original 

video, interpolates them into one image, and generates a synthetic intermediate 

frame. Apart from the Neural Networks, Statistical and Image Processing tech-

niques have been used to further enhance the generated frame. The final gener-

ated frame is an amalgamation of the interpolated frame and generated frame 

which are merged through masking. This has various applications including but 

not limited to remastering legacy videos with low frame rates to improve their 

quality. Finally, this work compares the results of the above technique against 

various pre-existing techniques. 
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1 Introduction 

Efficient video streaming is a requirement of many internet users to reduce network 

load and buffering time. On the server end, the streaming service could reduce the frame 

rate of the videos to improve streaming speed and on the consumer end, boost the frame 

rate to get back the original quality. If the frame rates could be boosted on the user side, 

then ideally, each video would only need half as many frames, reducing the size of the 

video on the server end.  

This work presents a method to double the frame rate of a video. Lower frame rate 

videos can be reconstructed into videos with twice the frame rate. The process involves 

the addition of frames (synthetic frames) into the original video in order to increase the 

frame rate. Synthetic frames are produced by extracting information from the adjacent 

frames in the video.  

There is some amount of noise present in the high frame rate video that has been 

constructed from the lower frame rate video [1]. Noise is introduced due to the synthetic 

frames not having the exact color scheme of the original frames, which leads to flick-

ering. However, with sufficient training of the Generative Adversarial Neural Network 
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followed by applying the image processing techniques mentioned ahead, it is possible 

to minimize such noise. 

Traditional methods of performing video frame rate boosting involve video frame 

duplication and video frame interpolation [2]. The former technique makes no improve-

ment to the visual quality of the video while the latter generates frames that have high 

mean squared error with respect to the desired frames in videos with rapid movements. 

This work aims to address these issues. 

 

2 Related Work 

Sharma et al. [2] suggest a method to increase the frame rate of videos by interpolation. 

Spatio-temporal medial filtering approach was implemented to improve the quality of 

the interpolated frames. Goodfellow et al. [3] proposes a method to estimate generative 

models through an adversarial process, essentially constructing a GAN. McCarthy et 

al. [4] suggests that viewers were less susceptible to changes in frame rate but were 

more sensitive to changes in resolution. This information is used to implement a model 

that processes videos of known resolution. Xiao et al. [1] used a Variational Auto En-

coder to boost the frame rate of videos. The problem of flickering persisted in the out-

put. Flickering can be reduced by a significant amount using techniques described in 

the following sections. Feng et al. [5] proposes techniques for transmitting videos over 

the network by compressing them. A client-side buffer is utilized to smoothen the frame 

rate of the video.  

Xu et al. [6] suggest a method to improve the frame rate of videos through an effi-

cient sub pixel convolution neural network. Higher resolution is realized by combining 

motion estimation between the adjacent frames with the CNN. Further amplification of 

frame rate was done by frame interpolation. This was done by calculating the image 

optical flow between the frames. The method was proven to have advantages in the 

quality of video restoration. Clark et al. [7] suggest a method to produce longer videos 

of higher resolution than the original using a Dual Video Discriminator GAN. The as-

sumption is that the pixels of each frame don't depend directly on other pixels of the 

video. The model utilizes two discriminators Spatial Discriminator and Temporal Dis-

criminator to resolve the issue of generating large videos. Spatial Discriminator dis-

cerns the contents of a single frame while the temporal discriminator signals movement. 

Ying et al. [8] propose a method to generate previously unseen frames of a video for 

the purpose of predicting the future to aid intelligent agents in prediction. The process 

of predicting is aided by synthetic inter frame difference. Two paths were designed - 

Coarse Frame generator, to determine the coarse details of the future frame and Differ-

ence Guide Generator, to generate the difference image that contains complementary 

details. In their paper, Qi et al. [9] explore a method to reduce bandwidth consumption 

by reducing the frame rate of the videos and further increase them through interpolation 

on the receiver side. Wang et al. [10] have developed a deep learning model to denoise 

the images. The model performs operations such as contrast enhancement and motion 
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awareness. The denoising model requires tuning parameters that have large variance 

across various settings.  

Li et al. [11] have discussed a method to upscale the frame rate of 3D videos. The 

color values are encoded in parallel to increase the speed of interpolation. Aigner et al. 

[12] have used PGGAN to predict the future frames of the video. New layers are added 

while training to accommodate larger datasets. Chen et al. [13] have implemented a 

GAN based model to translate videos. The model processes each frame and translates 

it to match the style of the target video. Janzen et al. [14] performed a study to under-

stand whether frame rate was more important to viewers than latency. Frame Rate af-

fects the ability of the viewers to recognize objects. Latency affected the viewers' per-

ception only when the frame rate was abysmally low. 

3 Proposed Method 

Three methods are discussed in this paper to improve the frame rate of videos. First one 

uses a simple Pix2Pix GAN [15] similar to Xiao et al. [1] to improve the frame rate of 

videos. The second method, which is supposed to provide an improvement over GAN, 

uses CycleGAN [16] to reduce flickering that occurs with the usage of a regular GAN. 

Our proposed method combines GAN and interpolation techniques [2] to fully exploit 

the two, each of which is able to work well in situations that the other model failed. 

GAN technique is shown to work better in videos with rapid movement while interpo-

lation has better performance when applied to videos with limited movement. 

 

3.1 Data Collection 

The videos used to train the models are required to have a high degree of variation to 

provide a dynamic set of frames. Failing to do so will cause the model to over-fit to that 

particular type of video and will not generalize well. The data collected include and is 

not limited to videos of nature, animated movies and racing scenes. 

3.2 Dataset Preparation 

Three sets of frames were extracted from each video and stored separately with two 

labels - input and output. The input data set contained the endpoint frames while the 

output contained the intermediate frames. This was done to separate the input from the 

desired output of the model. The two input frames were then interpolated by pixel-wise 

averaging. To tackle the hardware limitations of training a GAN model, the image sizes 

were resized to 256 x 256. 

3.3 Model Definition and Training 

Pix2Pix Generative Adversarial Network [3] consists of a Generator network and a 

Discriminator network. The Generator is trained to generate a synthetic frame from the 
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given input comprising two interpolated frames. The Discriminator is trained to discern 

if a frame is real or synthetically generated. Both of these models act as adversaries of 

each other and in turn, are used to improve the performance of the other one. The gen-

erator aims to generate frames that are indistinguishable from the ground truth. The 

discriminator compares the features of the synthetic and real images to differentiate 

between the two.  

The generator is an U-Net [15] model with 7 encoder layers and 7 decoder layers. 

The discriminator has 6 Convolution Layers in a sequence and takes the output of the 

generator and the target frame as the input. The output of the discriminator helps iden-

tify the degree of deviation of the generated image from ground truth. Each of the con-

volution layers performs 2d convolution between the image and the filter. A 4x4 filter 

is chosen to mask the image, which is padded with zeroes. Convolution operation be-

tween two 2d matrices is given by the following equation 

 
wherein, y is the activation map matrix. h is the filter matrix and x is the input matrix. 

Convolution is done to extract important features of the image and reduce the dimen-

sions of the said image. The resulting dimension of the activation map y after applying 

a single filter is given by the formula 

 
wherein, I is the dimension of the input image, F is the filter size and P is the padding. 

S represents the stride, the amount by which the filter moves after each convolution 

operation. The final dimension of the activation map will be (A, A, n), where n is the 

number of filters applied to the image. Each filter captures a specific feature of the 

image.  

The output of each convolution layer, including the hidden layers, is batch normal-

ized to reduce co-variance shift and to speed up the learning process. Co-variance shift 

refers to the shift in the mapping between input and output when the input distribution 

changes. By normalizing the values, higher learning rates can be used since the values 

don't fluctuate and conform to a distribution. It prevents over fitting by adding noise to 

the activation of hidden layers, similar to regularization.  

Normalization is done by first determining the mean of a batch of input denoted by 

I = {x1, x2, ..., xN}. where x1, x2 ..., xN are activation values. 

 
The normalized value of x is given by 

 
ε is an arbitrary constant and σ is the standard deviation of the batch. The normalized 

output is finally scaled and shifted in the following manner 
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The process of learning happens through minimizing the loss, which is calculated 

using cross entropy with logits. Logits are matrices that are zeroes for synthetic output 

and ones for real output and are denoted by x. The image matrix is denoted by z. 

 
The loss is minimized with Adam Optimizer, which aims to dynamically alter the 

learning rate by using a weighted sum of previous gradients, momentum and Nesterov 

acceleration gradient. Nesterov Acceleration gradient provides a look ahead to slow 

down the momentum as the weights approach the target value and prevent the value 

from crossing the convergence value. Momentum, does the exact opposite. It increases 

the rate of gradient descent with each epoch, essentially, speeding up the convergence. 

 
In equation (7), Vt represents the momentum at epoch t as a weighted average of the 

previous momentum and the previous gradient. ε is an arbitrary constant to prevent the 

denominator from becoming zero. β is a value between [0,1], used to perform exponen-

tial smoothing. As β approaches 1, the momentum will be an average of all the data 

points. At lower values of β, the momentum reduces. gt represents the gradient at epoch 

t. 

In equation (9), Sdw represents the weighted average of the previous gradients, with 

the most recent gradient contributing the highest to the next gradient. 

The model code, when written in Tensorflow, requires large amounts of training data 

and epochs to converge to the optimum. The model was trained for 200000 steps before 

it started providing acceptable results with low mean squared error and structural sim-

ilarity values closer to 1. The same model was implemented using Keras and due to the 

internal optimizations in Keras, the model converged after 15000 steps. 

The model was trained on a system with Intel i7, Hex-Core Processor, and an Nvidia 

GeForce 1050Ti Graphics Card. 

3.4 Histogram Matching 

As presented in Rakwatin et al. [17], Histogram matching is a technique that compares 

two Cumulative distribution functions and aims to map the source histogram to the 

target histogram. 

The distribution of the image generated by the generator is represented as a histo-

gram. This output is modified to fit the distribution of the previous frame.  

However, this method does not significantly improve the quality of the output be-

cause the auto encoder, which is the primary component of the Generator, is expected 

to match the distribution of the images. The generator works by minimizing a linear 

combination of mean squared error and Kullback-Leibler Divergence (KL Divergence) 

[18] between the input and the output.  
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KL Divergence is a representative of how different the two distributions are. Lower 

values of KL Divergence indicate that the histograms are similar. 

3.5 Filtering Noise in Synthetic Frames 

Various filters were implemented to remove the additional noise [19] introduced in the 

synthetic frame generated by GAN [1]. These include a Mean filter, Median Filter and 

Histogram Equalization. Median Filter outperformed the other filters as indicated by 

MSE values. 

 

4 CycleGAN 

CycleGAN is a model that enables unsupervised training of images. It is primarily used 

for the translation of images [16]. The network mainly learns the mapping between 

images. The motivation for using CycleGAN began with the flickering that was present 

in the output video of the Pix2Pix GAN. The initial idea was to use CycleGAN to trans-

late noisy or rather flickering frames into expected frames. There was however no con-

siderable improvement in the quality of the output as determined by mean squared error 

and structural similarity index. 

 

5 Region of Interest 

Another approach to resolve the issue of flickering in videos is to extract the region of 

interest from images and use these regions to selectively pass to GAN and interpolation 

model.  

Region of interest refers to the region that changes rapidly between frames. Any fast-

moving object is considered to be in the region of interest while the background, which 

is generally static between images, is discarded while training.  

While generating synthetic images, static regions are not translated by GAN but are 

interpolated from the adjacent frames, thereby reducing a significant amount of flick-

ering that the original GAN generated. GAN however, translates the region of interest. 

Interpolation performs sub optimally on rapidly changing videos. 

As mentioned by Wang et al. [20], if regions of interest are used instead of the entire 

image, the number of bits required to encode the image is lesser and consequently, the 

model has to learn fewer sets of weights, reducing the possibility of overfitting.  

Furthermore, the transmission of videos across networks with low bandwidth be-

comes easier if the video is broken down into a region of interest on the server end and 

sent to the client, where it is converted back to its original structure. 
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Fig. 1. Proposed Model Architecture. 

6 Evaluation 

Setting aside the qualitative analysis of the model's functionality by the visual inspec-

tion of the output, it is important to compute and compare the results quantitatively. 

High FPS videos are downgraded to half their FPS by removing alternate frames. 

The FPS of the downgraded video is doubled by inserting synthetically generated 

frames. The output video is compared against the original high FPS video by pixel wise 

differencing of the generated and the expected frame. Mean Squared Error is computed 

for the output generated by all of the methods demonstrated. Structural Similarity Index 

values are determined to perform a two-fold evaluation of the output.  

Mean squared error is given by the following equation 

 
Structural Similarity Index is a measure of how similar the two images in question 

are. If the SSIM value of two images is 1, that implies that the two images are exactly 

the same. By comparing the synthetic images with real images, we can conclude 

whether the two are indistinguishable. For multi-dimensional images (RGB), SSIM 

compares luminance (L), structure (S) and contrast (C). 

 
In the above equations, μ terms refer to mean and σ terms refer to standard deviation 

σxy is cross-covariance. SSIM is calculated between each synthetic and ideal frame of 
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the video. The average value of SSIM of every synthetic frame is a representative of 

how similar the synthetic video is to the original one. 

7 Performance and Results 

Given below are three examples of the outputs used for visual inspection. As observed, 

the synthetic frame is pretty close to the target frame. We have used MSE and SSIM to 

prove that that is true. 

The MSE between the ground truth video and the video generated by GAN model is 

lesser than the MSE obtained by frame duplication. However, frame interpolation has 

a lower MSE than the GAN network. This is because GAN introduces additional back-

ground noise which can be reduced by further training and focusing on the region of 

interest.  

CycleGAN has lower training time than Pix2Pix GAN but the performance is found 

to be slightly worse than GAN. This difference was not discernable in most of the vid-

eos. Occasionally, higher values of MSE are obtained, but it is visually not observable.  

A combination of GAN and interpolation outperforms the other models when used 

individually. The generated videos are visually pleasing.  

The video is split into fast-moving scenes and slow-moving scenes. This is done by 

extracting the region of interest and determining the MSE between consecutive regions 

of interest. Fast-moving scenes are fed to the GAN while slow-moving scenes are fed 

to the interpolation model. The resulting frames are impossible to identify as being 

synthetically generated. The only situation where the synthetic images are imperfect is 

when an extremely dark frame transitions into a very bright frame.  

A final approach to remove flickering is to determine the difference in average RGB 

values of the color palette of the synthetic image and the real image. Based on this 

difference, the brightness of the synthetic images is dynamically increased. This differ-

ence in average color palette values is consistent and is easy to scale. 

It is not necessary to focus on individual pixels because any minor discrepancies are 

taken care of with median filters. 

Table 1. Performance of the Models 

Method Used Pixel-Wise Mean Squared Error Average SSIM 

Frame Duplication 0.01372 1.00000 

Frame Interpolation 0.00918 0.88873 

GAN Model 0.00936 0.84048 

CycleGAN 0.00966 0.86300 

GAN + Interpolation 0.00929 0.88250 
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Table 2. Sample Results 

Frame i-1 Frame i+1 Interpolation Final Output 

    

    

    

 

8 Future Work 

More advanced models can be implemented and tested for improving the accuracy of 

the synthetic frames generated. Due to hardware limitations, the input dimension is re-

stricted to 256 x 256 x 3. Future work involves optimizing this model to handle high-

resolution videos without resizing them. 

9 Limitations 

Hardware limitations restricted the training process to small datasets. The models were 

repeatedly retrained on batches of small datasets. The video resolution was restricted 

to 256 x 256 for the same reason. 
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